
Problema hrs

Soluție 1 – O(n) – 100p

Înainte de toate trebuie să stabilim în ce structură de date vom păstra elementele șirului hrs. 
Observăm că fiecare element din șirul r se calculează pe baza precedentului, astfel am 
putea trage concluzia că este suficient să păstrăm în memorie aceste două elemente. Dar 
ne creează probleme șirul s ale cărui elemente iau valori – nu doar în funcție de valorile din 
propriul șir s – ci și în funcție de valorile tuturor elementelor șirului r generate până la 
momentul curent. Da, dar nu avem nevoie de toate elementele șirului r, deoarece elementul 
curent din șirul s primește cea mai mică valoare care nu apare în șirul r. Astfel, deoarece 
elementele șirului s „cresc” mai încet decât cele din r, vom depista (datorită valorii maxime a 
lui n) că este suficient ca din șirul r  să păstrăm cel mult 500 de elemente (de fapt exact 
345). Vom fi atenți ca elementele acestuia, precum și restul variabilelor/parametrilor să fie 
declarate în C/C++ de tipul long, iar în Pascal – de tipul longint. 
În concluzie, vom avea un șir r (de lungime maximă 500) și o variabilă s în care generăm valoarea 
elementului curent din șirul s (este suficient pentru determinarea următorului element din șirul r). 
Observăm că valorile șirului s cresc cu 1, sărind peste acea valoare care apare deja în șirul r. În 
variabila pr vom păstra indicele elementului șirului r care este mai mare decât valoarea curentă a 
variabilei s.
Pornim cu primii termeni ai șirurilor r și s și determinăm cel de al n-lea element al șirului r, respectiv 
al șirului s, utilizând formula rn = rn-1 + s. Al n-lea element al șirului s va fi sn = sn-1 + 1, dacă sn-1 + 1 ≠ 
rpr, și sn = sn-1 + 2, dacă sn-1 + 1 = rpr. În cazul sn = sn-1 + 2 valoarea pr crește cu 1, astfel indicând 
următorul element din șirul r.
Pentru a putea determina și acei termeni din șirul r care nu sunt memorați în șirul r, folosim două 
variabile: r1 și r2, unde r1 este, de exemplu, al i – 1-lea element, iar r2 al i-lea. La fiecare pas nou, r1 
primește valoarea lui r2, urmând să determinăm un nou r2. 

Subalgoritm hrs(n, rn, s, n): { rn va fi al n-lea element din șirul r, s al n-lea din șirul s }
r1  1 { elementul actual din șirul r }
r[1]  1 { memorăm primul element }
s  2 { primul element din șirul s }
pr  2  { poziția în șirul r, unde avem o valoare mai mare decât elementul curent în șirul s }
k  1 { indice în șirul r }
i  1 { contor până la n }
CâtTimp i < n execută: { dorim să determinăm al n-lea element din șirul r și din șirul s }

i  i + 1
r2  r1 + s { calculăm următorul termen în șirul r pe baza precedentului și a lui s }
s  s + 1 { s crește cu 1 față de valoarea elementului precedent }
Dacă k < 500 atunci { păstrăm doar primele 500 elemente în șirul r }

k  k + 1
r[k]  r2

SfDacă 
Dacă s = r[pr] atunci { dacă valoarea s propusă se află în șirul r }

s  s + 1 { s trebuie să fie cel mai mic, dar mai mare decât r[pr] }
pr  pr + 1 { data viitoare comparăm cu următorul element din șirul r }



SfDacă
r1  r2 { actualul element din șirul r va fi cel folosit la pasul următor pentru a calcula următorul 

element }
SfCâtTimp
rn  r2 { rn va fi rezultatul (al n-lea termen din șirul r), rn și s sunt parametri de ieșire }

SfSubalgoritm

Observații:
 O rezolvare în Pascal în care se păstrează întreg șirul r, eventual și s, nu va reuși să obțină 

puncte, decât pentru testele 1-7. 
 Dacă în Pascal nu se lucrează cu tipul longint, de asemenea, nu se vor obține puncte pentru 

testele 4-10. 


