Problema hrs

Solutie 1 — O(n) — 100p

[nainte de toate trebuie sa stabilim in ce structurd de date vom pastra elementele sirului hrs.
Observam ca fiecare element din sirul r se calculeaza pe baza precedentului, astfel am
putea trage concluzia ca este suficient sa pastram in memorie aceste doua elemente. Dar
ne creeaza probleme sirul s ale carui elemente iau valori — nu doar in functie de valorile din
propriul sir s — ci si in functie de valorile tuturor elementelor sirului r generate pana la
momentul curent. Da, dar nu avem nevoie de toate elementele sirului r, deoarece elementul
curent din sirul s primeste cea mai mica valoare care nu apare in sirul r. Astfel, deoarece
elementele sirului s ,cresc” mai incet decéat cele din r, vom depista (datorita valorii maxime a
lui n) ca este suficient ca din sirul r sa pastram cel mult 500 de elemente (de fapt exact
345). Vom fi atenti ca elementele acestuia, precum si restul variabilelor/parametrilor sa fie
declarate in C/C++ de tipul 1ong, iar in Pascal — de tipul 1ongint.

In concluzie, vom avea un sir r (de lungime maxima 500) si o variabila s in care generim valoarea
elementului curent din sirul s (este suficient pentru determinarea urmatorului element din sirul).
Observim cd valorile sirului s cresc cu 1, sdrind peste acea valoare care apare deja in sirul r. In
variabila pr vom pastra indicele elementului sirului care este mai mare decat valoarea curentd a
variabilei s.

Pornim cu primii termeni ai sirurilor r si s si determinam cel de al n-lea element al sirului r, respectiv
al sirului s, utilizand formula r, = r,, + s. Al n-lea element al sirului s va fi s, =s,,+1,dacds,, +1#
Fors $1 8, = 8,1 + 2, dacd s,,+ 1 =r,. In cazul s, = s, + 2 valoarea pr creste cu 1, astfel indicand
urmatorul element din sirul r.

Pentru a putea determina si acei termeni din sirul » care nu sunt memorati in sirul r, folosim doud
variabile: r1 si r2, unde r1 este, de exemplu, al i — 1-lea element, iar 72 al i-lea. La fiecare pas nou, r1
primeste valoarea lui 2, urmand sa determindm un nou r2.

Subalgoritm hrs(n, rn, s, n): { va fi al n-lea element din sirul r, s al n-lea din sirul s }
ri « 1 { elementul actual din sirul r }
r[1] « 1 { memoram primul element }
s « 2 { primul element din sirul s }
pr « 2 { pozitia in sirul r, unde avem o valoare mai mare decadt elementul curent in sirul s }
k «1 { indice in sirulr }
ie1 { contor pana lan }
CatTimp i < n executa: { dorim sa determinam al n-lea element din sirul r si din sirul s }

iei+1

r2 «rl+s { calculam urmatorul termen in sirul r pe baza precedentului si a lui s }

S« s+1 { s creste cu 1 fata de valoarea elementului precedent }

Daca k < 500 atunci { pastram doar primele 500 elemente in sirul r }
k« k+1
r[k] <« r2

SfDaca

Daca s = r[pr] atunci { daca valoarea s propusa se afla in sirul r }
S« s+1 { s trebuie sa fie cel mai mic, dar mai mare decdt t[pr] }

pr < pr + 1 { data viitoare comparam cu urmatorul element din sirul r }

SfDaca
ri <« r2 { actualul element din sirul r va fi cel folosit la pasul urmdator pentru a calcula urmdatorul
element }
SfCatTimp
rn <« r2 { va fi rezultatul (al n-lea termen din sirul t), tn i s sunt parametri de iesire }
SfSubalgoritm

Observatii:
e O rezolvare in Pascal in care se pastreaza intreg sirul r, eventual si s, nu va reusi sd obtina
puncte, decat pentru testele 1-7.

e Daca 1n Pascal nu se lucreaza cu tipul longint, de asemenea, nu se vor obtine puncte pentru
testele 4-10.

